Combustion characterisation of bituminous coal and pinus sawdust blends by use of thermo-gravimetric analysis

Garikai T. Marangwanda, Daniel M. Madyira, Patrick G. Ndungu, Chido H. Chihobo

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

The cocombustion of coal and pinus sawdust waste is an economically viable and sustainable option for increasing the share of biomass in energy production. This technology also has the potential to reduce the emission of greenhouse gases from existing coal fired power plants. The thermal synergistic effects of cocombusting Hwange bituminous coal (HC) with Pinus sawdust (PS) were thus investigated using thermogravimetric analysis. Fuel blending mass ratios of 100HC, 90HC10PS, 80HC20PS, 70HC30PS, and 100PS under an oxidative atmosphere at three different heating rates of 5, 12.5, and 20C/min were used for the experimental setup. Zero to negative synergy was generally observed for the mass loss curves (TG) at different blending ratios. Generally positive synergy was observed with relation to rate of mass loss curves (DTG) for the 80HC20PS and 70HC30PS fuel blends only. The ignition index increased with blending ratio by an average of 42.86%, whilst the burnout index showed a maximum increase of 14.6% at 20C/min. However, the combustion index representative of stability showed a decreasing trend generally for all the heating rates. No combustion index produced a linear variation with temperature, though upon evaluation, an optimum mass ratio of 20% pinus sawdust was suggested. The chosen optimum blending ratio demonstrated increased ignition and burnout indexes whilst maintaining the stability of combustion at a reasonable range.

Original languageEnglish
Article number7547
JournalEnergies
Volume14
Issue number22
DOIs
Publication statusPublished - 1 Nov 2021

Keywords

  • Biomass
  • Burnout index
  • Coal
  • Cocombustion
  • Combustion index
  • Ignition index
  • Thermogravimetric analysis

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Engineering (miscellaneous)
  • Energy Engineering and Power Technology
  • Energy (miscellaneous)
  • Control and Optimization
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Combustion characterisation of bituminous coal and pinus sawdust blends by use of thermo-gravimetric analysis'. Together they form a unique fingerprint.

Cite this