TY - JOUR
T1 - Coal Fly Ash Decorated with Graphene and Polyaniline Nanocomposites for Effective Adsorption of Hexavalent Chromium and Its Reuse for Photocatalysis
AU - Umejuru, Emmanuel Christopher
AU - Prabakaran, Eswaran
AU - Pillay, Kriveshini
N1 - Publisher Copyright:
© 2023 American Chemical Society. All rights reserved.
PY - 2023/5/23
Y1 - 2023/5/23
N2 - Coal fly ash was functionalized and modified with graphene oxide and polyaniline (CFA/GO/PANI nanocomposite) through hydrothermal synthesis, which was used for remediation of hexavalent chromium (Cr(VI)) ions. Batch adsorption experiments were carried out to investigate the effects of adsorbent dosage, pH, and contact time on the removal of Cr(VI). The ideal pH for this work was 2, and it was used for all other studies. The Cr(VI)-loaded spent adsorbent CFA/GO/PANI + Cr(VI) was reused as a photocatalyst for the degradation of bisphenol A (BPA). The CFA/GO/PANI nanocomposite removed Cr(VI) ions rapidly. The adsorption process was best described by pseudo-second-order kinetics and the Freundlich isotherm model. The CFA/GO/PANI nanocomposite demonstrated a high adsorption capacity of 124.72 mg/g for Cr(VI) removal. In addition, the Cr(VI)-loaded spent adsorbent played a significant role in the photocatalytic degradation of BPA with 86% degradation. The reuse of the Cr(VI)-loaded spent adsorbent as a photocatalyst presents a new solution for the reduction of secondary waste from the adsorption process.
AB - Coal fly ash was functionalized and modified with graphene oxide and polyaniline (CFA/GO/PANI nanocomposite) through hydrothermal synthesis, which was used for remediation of hexavalent chromium (Cr(VI)) ions. Batch adsorption experiments were carried out to investigate the effects of adsorbent dosage, pH, and contact time on the removal of Cr(VI). The ideal pH for this work was 2, and it was used for all other studies. The Cr(VI)-loaded spent adsorbent CFA/GO/PANI + Cr(VI) was reused as a photocatalyst for the degradation of bisphenol A (BPA). The CFA/GO/PANI nanocomposite removed Cr(VI) ions rapidly. The adsorption process was best described by pseudo-second-order kinetics and the Freundlich isotherm model. The CFA/GO/PANI nanocomposite demonstrated a high adsorption capacity of 124.72 mg/g for Cr(VI) removal. In addition, the Cr(VI)-loaded spent adsorbent played a significant role in the photocatalytic degradation of BPA with 86% degradation. The reuse of the Cr(VI)-loaded spent adsorbent as a photocatalyst presents a new solution for the reduction of secondary waste from the adsorption process.
UR - http://www.scopus.com/inward/record.url?scp=85160921082&partnerID=8YFLogxK
U2 - 10.1021/acsomega.2c05352
DO - 10.1021/acsomega.2c05352
M3 - Article
AN - SCOPUS:85160921082
SN - 2470-1343
VL - 8
SP - 17523
EP - 17537
JO - ACS Omega
JF - ACS Omega
IS - 20
ER -