Abstract
The continuous discharge of cyanide-containing effluents to the environment has necessitated for the development of environmentally benign treatment processes that would result in complete detoxification of the cyanide-containing wastewaters, without producing additional environmental toxicants. Since biological detoxification of hazardous chemical compounds has been renowned for its robustness and environmental-friendliness, the ability of the Exiguobacterium acetylicum (GenBank accession number KT282229) and Bacillus marisflavi (GenBank accession number KR016603) to co-metabolise thiocyanate (SCN−) and free cyanide (CN−) under alkaline conditions was evaluated. E. acetylicum had an SCN− degradation efficiency of 99.9 % from an initial SCN− concentration of 150 mg SCN−/L, but the organism was unable to degrade CN−. Consequently, B. marisflavi had a CN− degradation efficiency of 99 % from an initial concentration of 200 mg CN−/L. Similarly, the organism was unable to degrade SCN−; hence, this resulted in the evaluation of co-metabolism of SCN− and CN− by the two microbial species. Optimisation of operational conditions was evaluated using response surface methodology (RSM). A numeric optimisation technique was used to evaluate the optimisation of the input variables i.e. pH, temperature, SCN− and CN− concentrations. The optimum conditions were found to be as follows: pH 9.0, temperature 34 °C, 140 mg SCN−/L and 205 mg CN−/L under which complete SCN− and CN− degradation would be achieved over a 168-h period. Using the optimised data, co-metabolism of SCN− and CN− by both E. acetylicum and B. marisflavi was evaluated, achieving a combined degradation efficiency of ≥99.9 %. The high degradative capacity of these organisms has resulted in their supplementation on an active continuous biological degradation system that is treating both SCN− and CN−.
Original language | English |
---|---|
Article number | 173 |
Journal | 3 Biotech |
Volume | 6 |
Issue number | 2 |
DOIs | |
Publication status | Published - 1 Dec 2016 |
Externally published | Yes |
Keywords
- B. marisflavi
- Biodegradation
- Co-metabolism
- E. acetylicum
- Free cyanide
- Thiocyanate
ASJC Scopus subject areas
- Biotechnology
- Environmental Science (miscellaneous)
- Agricultural and Biological Sciences (miscellaneous)