Chitosan- Bidens pilosa Extract-Based Coating with Enhanced Free Radical Scavenging, Antifungal, and Water Barrier Properties: Metabolite Profiling, Film Characterization, and Raspberry Preservation

Kwanele A. Nxumalo, Olaniyi A. Fawole

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Chitosan (Ch) was functionalized with Bidens pilosa (BP) extract at 1, 3, or 5% to form Ch-1 BP, Ch-3 BP, and Ch-5 BP, respectively. Ch without plant extract was used as a control. The composite films were characterized and tested for antifungal properties in the agar disc diffusion approach and antioxidant capacity in the 2,2-diphenyl-1-picrylhydrazyl assay. Chitosan films fused with B. pilosa extract inhibited the growth of P. expansum with a 10 mm inhibition diameter compared to control films (3.33 mm). Ch-1 BP exhibited the highest (79.13%) radical scavenging activity (RSA), and control films had the lowest RSA (50.97%). Liquid chromatography-mass spectrometry analysis identified 20 metabolites, including phenolic acids (9), organic acids (8), monosaccharides (1), amino acids (1), flavonoids (1), and six unknown polyphenols. Chitosan-based composite coating (Ch-1% BP) exhibited the lowest weight loss percentage (16.74%) and decay incidence (17.3%), while the untreated fruit showed higher weight loss and decay incidence (48.33% and 83.2%, respectively). The effectiveness of chitosan-enriched coating in maintaining the postharvest quality of raspberry fruit suggests that this plant could be a postharvest agent for controlling microbial spoilage and protecting against oxidative stress, ultimately resulting in extended storage in horticultural crops.

Original languageEnglish
Article number5580928
JournalJournal of Food Quality
Volume2023
DOIs
Publication statusPublished - 2023

ASJC Scopus subject areas

  • Food Science
  • Safety, Risk, Reliability and Quality

Fingerprint

Dive into the research topics of 'Chitosan- Bidens pilosa Extract-Based Coating with Enhanced Free Radical Scavenging, Antifungal, and Water Barrier Properties: Metabolite Profiling, Film Characterization, and Raspberry Preservation'. Together they form a unique fingerprint.

Cite this