Abstract
In this study, wear resistance and some selected physical properties of pawpaw-glass fiber hybrid reinforced epoxy composites were investigated. Two different layers of pawpaw stem-linear and network structures-were extracted and chemically modified. Hybrid reinforced composites were developed comparatively from the two fiber structures and glass fiber using hand lay-up in an open mold production process. The wear resistance was studied via the use of a Taber Abrasion Tester while selected physical properties were also investigated. The influence of the fiber structure on the properties examined revealed that network structured pawpaw fiber was the best as reinforcement compared to the linearly structured fiber. The addition of these vegetable fibers to epoxy resin brought about improved thermal conductivity and increased the curing rate while the wear resistance of the corresponding developed composites were enhanced by 3 wt% and 15 wt% of fibers from linear and network pawpaw fibers. It was noticed that linearly structured pawpaw fiber had its best result at 3 wt% while network structured pawpaw fiber had its best result at 15 wt%.
Original language | English |
---|---|
Article number | 44 |
Journal | Fibers |
Volume | 8 |
Issue number | 7 |
DOIs | |
Publication status | Published - 1 Jul 2020 |
Keywords
- Agro-waste
- Biodegradable
- Environment
- Hybrid
- Polymer composite
ASJC Scopus subject areas
- Ceramics and Composites
- Civil and Structural Engineering
- Biomaterials
- Mechanics of Materials