TY - JOUR
T1 - Characterization of mutations in the rpoB gene conferring rifampicin resistance in Mycobacterium tuberculosis complex isolated from lymph nodes of slaughtered cattle from South Africa
AU - Bhembe, Nolwazi L.
AU - Green, Ezekiel
N1 - Publisher Copyright:
© 2020, Sociedade Brasileira de Microbiologia.
PY - 2020/12
Y1 - 2020/12
N2 - Tuberculosis (TB) is an ongoing public health care, with the state of affairs exacerbated by the growth of anti-TB drug-resistant forms in South Africa. Not much attention is given to zoonotic TB. Thus, this study aimed to determine the presence of rpoB mutations among Mycobacterium tuberculosis complex (MTBC) isolates of lymph nodes from slaughtered cattle. A count of 14,950 carcasses from selected abattoirs were examined for nodular lesions and enlarged lymph nodes; 376 lymph nodes were cultured for MTBC. Positive isolates were tested for drug sensitivity against three anti-TB drugs, rifampicin, isoniazid, and ethambutol, using the Lowenstein-Jensen proportion method. Rifampicin-resistant isolates were sequenced, and spoligotyping was performed for lineage classification. A total of 162 isolates were confirmed as MTBC and 42 isolates were resistant to rifampicin. All rifampicin-resistant isolates carried the H526D rpoB mutation, and almost all of them carried an additional nonsynonymous nucleotide substitution in the hot spot region, in three other codons (510, 516 and 522). In total, 5 different mutations at four codons are reported, including one isolate showing 3 of them which has never been reported in South Africa. In addition, we report 4 different spoligo patterns, with 34 isolates known and 8 unknown spoligotype international types. From the known clades, 5 (11.9%) isolates were identified as Bov_4 caprae lineage, 29 (69%) Beijing, and 8 (19.1%) remaining unknown clades. The detection of MTBC-resistant patterns from cattle lymph nodes (Eastern Cape, South Africa) necessitates the investigation of other possible routes of MTBC transmission.
AB - Tuberculosis (TB) is an ongoing public health care, with the state of affairs exacerbated by the growth of anti-TB drug-resistant forms in South Africa. Not much attention is given to zoonotic TB. Thus, this study aimed to determine the presence of rpoB mutations among Mycobacterium tuberculosis complex (MTBC) isolates of lymph nodes from slaughtered cattle. A count of 14,950 carcasses from selected abattoirs were examined for nodular lesions and enlarged lymph nodes; 376 lymph nodes were cultured for MTBC. Positive isolates were tested for drug sensitivity against three anti-TB drugs, rifampicin, isoniazid, and ethambutol, using the Lowenstein-Jensen proportion method. Rifampicin-resistant isolates were sequenced, and spoligotyping was performed for lineage classification. A total of 162 isolates were confirmed as MTBC and 42 isolates were resistant to rifampicin. All rifampicin-resistant isolates carried the H526D rpoB mutation, and almost all of them carried an additional nonsynonymous nucleotide substitution in the hot spot region, in three other codons (510, 516 and 522). In total, 5 different mutations at four codons are reported, including one isolate showing 3 of them which has never been reported in South Africa. In addition, we report 4 different spoligo patterns, with 34 isolates known and 8 unknown spoligotype international types. From the known clades, 5 (11.9%) isolates were identified as Bov_4 caprae lineage, 29 (69%) Beijing, and 8 (19.1%) remaining unknown clades. The detection of MTBC-resistant patterns from cattle lymph nodes (Eastern Cape, South Africa) necessitates the investigation of other possible routes of MTBC transmission.
KW - Alleles
KW - Gene
KW - Mutations
KW - Resistance
KW - Sequencing
KW - Tuberculosis
UR - http://www.scopus.com/inward/record.url?scp=85089023803&partnerID=8YFLogxK
U2 - 10.1007/s42770-020-00356-4
DO - 10.1007/s42770-020-00356-4
M3 - Article
C2 - 32757138
AN - SCOPUS:85089023803
SN - 1517-8382
VL - 51
SP - 1919
EP - 1927
JO - Brazilian Journal of Microbiology
JF - Brazilian Journal of Microbiology
IS - 4
ER -