Abstract
Globally, multidrug resistance (MDR) in breast cancer has become the major cause of morbidity and mortality among women. This study was designed to overcome resistance, reduce dose-dependence in photodynamic therapy (PDT) and evaluate cell death mechanisms induced by green synthesized silver nanoparticles (AgNPs) in combination with pheophorbide-a mediated PDT on superlative, and most architectured three-dimensional (3-D) doxorubicin (DOX) resistant MCF-7 breast cancer cells with overexpressed p-glycoproteins in vitro. In addition to the aforementioned scope, the combination of green NPs with PDT has been reported to yield a good disease prognosis which in most cases is accompanied with manageable adverse effects. Briefly, MDR MCF-7 breast cancer cells were cultured in a 96 well plate to form 3D tumor spheroids and later treated with optimized concentrations of AgNPs and pheophorbide-a in monotherapy. After 24 h treatment, 3-[4,5-dimethylthiazole-2- yl]-2,5- diphenyl tetrazolium bromide (MTT) assay was performed to determine the 50% inhibitory concentration (IC50) for both experimental models. Morphological changes were observed by using an inverted light microscope, viability by MTT assay, and cell death analysis by Annexin V-FITC-PI staining. Taken together, the results from this study displayed a dose-dependent decrease in cell viability which was accompanied by significant morphological changes. Furthermore, Annexin V-FITC-PI assay showed apoptosis as the most prominent cell death mechanism induced by PPBa-mediated PDT and AgNPs. Taken together, the findings from the present study highlight the advantages of green nanotechnology in cancer therapy.
Original language | English |
---|---|
DOIs | |
Publication status | Published - 2023 |
Event | 2023 European Conference on Biomedical Optics, ECBO 2023 - Munich, Germany Duration: 25 Jun 2023 → 29 Jun 2023 |
Conference
Conference | 2023 European Conference on Biomedical Optics, ECBO 2023 |
---|---|
Country/Territory | Germany |
City | Munich |
Period | 25/06/23 → 29/06/23 |
Keywords
- apoptosis
- Cancer
- Dicoma anomala
- green silver nanoparticles
- necrosis
- pheophorbide a
- photodynamic therapy
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Biomaterials
- Biomedical Engineering
- Atomic and Molecular Physics, and Optics