Catalyst Design: Counter Anion Effect on Ni Nanocatalysts Anchored on Hollow Carbon Spheres

Ryan O’Connor, Joyce B. Matsoso, Victor Mashindi, Pumza Mente, Lebohang Macheli, Beatriz D. Moreno, Bryan P. Doyle, Neil J. Coville, Dean H. Barrett

Research output: Contribution to journalArticlepeer-review


Herein, the influence of the counter anion on the structural properties of hollow carbon spheres (HCS) support was investigated by varying the nickel metal precursor salts applied. TEM and SEM micrographs revealed the dimensional dependence of the HCS shell on the Ni precursor salt, as evidenced by thick (~42 nm) and thin (~23 nm) shells for the acetate and chloride-based salts, respectively. Importantly, the effect of the precursor salt on the textural properties of the HCS nanosupports (~565 m2/gNi(acet)) and ~607 m2/gNiCl), influenced the growth of the Ni nanoparticles, viz for the acetate-(ca 6.4 nm)- and chloride (ca 12 nm)-based salts, respectively. Further, XRD and PDF analysis showed the dependence of the reduction mechanism relating to nickel and the interaction of the nickel–carbon support on the type of counter anion used. Despite the well-known significance of the counter anion on the size and crystallinity of Ni nanoparticles, little is known about the influence of such counter anions on the physicochemical properties of the carbon support. Through this study, we highlight the importance of the choice of the Ni-salt on the size of Ni in Ni–carbon-based nanocatalysts.

Original languageEnglish
Article number426
Issue number3
Publication statusPublished - Feb 2023


  • acetate
  • catalyst design
  • chloride
  • counter anion
  • hollow carbon spheres
  • nickel nanoparticles

ASJC Scopus subject areas

  • General Chemical Engineering
  • General Materials Science


Dive into the research topics of 'Catalyst Design: Counter Anion Effect on Ni Nanocatalysts Anchored on Hollow Carbon Spheres'. Together they form a unique fingerprint.

Cite this