TY - JOUR
T1 - Bulk and grain-scale minor sulfur isotope data reveal complexities in the dynamics of Earth’s oxygenation
AU - Izon, Gareth
AU - Luo, Genming
AU - Uveges, Benjamin T.
AU - Beukes, Nicolas
AU - Kitajima, Kouki
AU - Ono, Shuhei
AU - Valley, John W.
AU - Ma, Xingyu
AU - Summons, Roger E.
N1 - Publisher Copyright:
Copyright © 2022 the Author(s).
PY - 2022/3/29
Y1 - 2022/3/29
N2 - The disappearance of mass-independent sulfur isotope fractionation (S-MIF) within the c. 2.3-billion-year-old (Ga) Rooihoogte Formation has been heralded as a chemostratigraphic marker of permanent atmospheric oxygenation. Reports of younger S-MIF, however, question this narrative, leaving significant uncertainties surrounding the timing, tempo, and trajectory of Earth’s oxygenation. Leveraging a new bulk quadruple S-isotope record, we return to the South African Transvaal Basin in search of support for supposed oscillations in atmospheric oxygen beyond 2.3 Ga. Here, as expected, within the Rooihoogte Formation, our data capture a collapse in Δ3×S values and a shift from Archean-like Δ36S/Δ33S slopes to their mass-dependent counterparts. Importantly, the interrogation of a Δ33S-exotic grain reveals extreme spatial variability, whereby atypically large Δ33S values are separated from more typical Paleoproterozoic values by a subtle grain-housed siderophile-enriched band. This isotopic juxtaposition signals the coexistence of two sulfur pools that were able to escape diagenetic homogenization. These large Δ33S values require an active photochemical sulfur source, fingerprinting atmospheric S-MIF production after its documented cessation elsewhere at ∼2.4 Ga. By contrast, the Δ33S monotony observed in overlying Timeball Hill Formation, with muted Δ33S values (<0.3) and predominantly mass-dependent Δ36S/Δ33S systematics, remains in stark contrast to recent reports of pronounced S-MIF within proximal formational equivalents. If reflective of atmospheric processes, these observed kilometer-scale discrepancies disclose heterogenous S-MIF delivery to the Transvaal Basin and/or poorly resolved fleeting returns to S-MIF production. Rigorous bulk and grain-scale analytical campaigns remain paramount to refine our understanding of Earth’s oxygenation and substantiate claims of post-2.3 Ga oscillations in atmospheric oxygen.
AB - The disappearance of mass-independent sulfur isotope fractionation (S-MIF) within the c. 2.3-billion-year-old (Ga) Rooihoogte Formation has been heralded as a chemostratigraphic marker of permanent atmospheric oxygenation. Reports of younger S-MIF, however, question this narrative, leaving significant uncertainties surrounding the timing, tempo, and trajectory of Earth’s oxygenation. Leveraging a new bulk quadruple S-isotope record, we return to the South African Transvaal Basin in search of support for supposed oscillations in atmospheric oxygen beyond 2.3 Ga. Here, as expected, within the Rooihoogte Formation, our data capture a collapse in Δ3×S values and a shift from Archean-like Δ36S/Δ33S slopes to their mass-dependent counterparts. Importantly, the interrogation of a Δ33S-exotic grain reveals extreme spatial variability, whereby atypically large Δ33S values are separated from more typical Paleoproterozoic values by a subtle grain-housed siderophile-enriched band. This isotopic juxtaposition signals the coexistence of two sulfur pools that were able to escape diagenetic homogenization. These large Δ33S values require an active photochemical sulfur source, fingerprinting atmospheric S-MIF production after its documented cessation elsewhere at ∼2.4 Ga. By contrast, the Δ33S monotony observed in overlying Timeball Hill Formation, with muted Δ33S values (<0.3) and predominantly mass-dependent Δ36S/Δ33S systematics, remains in stark contrast to recent reports of pronounced S-MIF within proximal formational equivalents. If reflective of atmospheric processes, these observed kilometer-scale discrepancies disclose heterogenous S-MIF delivery to the Transvaal Basin and/or poorly resolved fleeting returns to S-MIF production. Rigorous bulk and grain-scale analytical campaigns remain paramount to refine our understanding of Earth’s oxygenation and substantiate claims of post-2.3 Ga oscillations in atmospheric oxygen.
KW - Transvaal Basin
KW - atmospheric oxygenation
KW - mass-independent S-isotope fractionation
KW - quadruple sulfur isotope
UR - http://www.scopus.com/inward/record.url?scp=85126865637&partnerID=8YFLogxK
U2 - 10.1073/pnas.2025606119
DO - 10.1073/pnas.2025606119
M3 - Article
C2 - 35312361
AN - SCOPUS:85126865637
SN - 0027-8424
VL - 119
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 13
M1 - e2025606119
ER -