Blockchain-Based Federated Learning in UAVs Beyond 5G Networks: A Solution Taxonomy and Future Directions

Deepti Saraswat, Ashwin Verma, Pronaya Bhattacharya, Sudeep Tanwar, Gulshan Sharma, Pitshou N. Bokoro, Ravi Sharma

Research output: Contribution to journalArticlepeer-review

39 Citations (Scopus)


Recently, unmanned aerial vehicles (UAVs) have gained attention due to increased use-cases in healthcare, monitoring, surveillance, and logistics operations. UAVs mainly communicate with mobile base stations, ground stations (GS), or networked peer UAVs, known as UAV swarms. UAVs communicate with GS, or UAV swarms, over wireless channels to support mission-critical operations. Communication latency, bandwidth, and precision are of prime importance in such operations. With the rise of data-driven applications, fifth-generation (5G) networks would face bottlenecks to communicate at near-real-time, at low latency and improved coverage. Thus, researchers have shifted towards network designs that incorporate beyond 5G (B5G) networks for UAV designs. However, UAVs are resource-constrained, with limited power and battery, and thus centralized cloud-centric models are not suitable. Moreover, as exchanged data is through open channels, privacy and security issues exist. Federated learning (FL) allows data to be trained on local nodes, preserving privacy and improving network communication. However, sharing of local updates is required through a trusted consensus mechanism. Thus, blockchain (BC)-based FL schemes for UAVs allow trusted exchange of FL updates among UAV swarms and GS. To date, limited research has been carried out on the integration of BC and FL in UAV management. The proposed survey addresses the gap and presents a solution taxonomy of BC-based FL in UAVs for B5G networks due to the open problem. This paper presents a reference architecture and compares its potential benefits over traditional BC-based UAV networks. Open issues and challenges are discussed, with possible future directions. Finally, a logistics case study of BC-based FL-oriented UAVs in 6G networks is presented. The survey aims to aid researchers in developing potential UAV solutions with the key integrating principles over a diverse set of application verticals.

Original languageEnglish
Pages (from-to)33154-33182
Number of pages29
JournalIEEE Access
Publication statusPublished - 2022


  • 6G
  • Beyond 5G networks
  • blockchain
  • federated learning
  • unmanned aerial vehicles

ASJC Scopus subject areas

  • General Computer Science
  • General Materials Science
  • General Engineering


Dive into the research topics of 'Blockchain-Based Federated Learning in UAVs Beyond 5G Networks: A Solution Taxonomy and Future Directions'. Together they form a unique fingerprint.

Cite this