TY - JOUR
T1 - Blockchain-Based Federated Learning in UAVs Beyond 5G Networks
T2 - A Solution Taxonomy and Future Directions
AU - Saraswat, Deepti
AU - Verma, Ashwin
AU - Bhattacharya, Pronaya
AU - Tanwar, Sudeep
AU - Sharma, Gulshan
AU - Bokoro, Pitshou N.
AU - Sharma, Ravi
N1 - Publisher Copyright:
© 2013 IEEE.
PY - 2022
Y1 - 2022
N2 - Recently, unmanned aerial vehicles (UAVs) have gained attention due to increased use-cases in healthcare, monitoring, surveillance, and logistics operations. UAVs mainly communicate with mobile base stations, ground stations (GS), or networked peer UAVs, known as UAV swarms. UAVs communicate with GS, or UAV swarms, over wireless channels to support mission-critical operations. Communication latency, bandwidth, and precision are of prime importance in such operations. With the rise of data-driven applications, fifth-generation (5G) networks would face bottlenecks to communicate at near-real-time, at low latency and improved coverage. Thus, researchers have shifted towards network designs that incorporate beyond 5G (B5G) networks for UAV designs. However, UAVs are resource-constrained, with limited power and battery, and thus centralized cloud-centric models are not suitable. Moreover, as exchanged data is through open channels, privacy and security issues exist. Federated learning (FL) allows data to be trained on local nodes, preserving privacy and improving network communication. However, sharing of local updates is required through a trusted consensus mechanism. Thus, blockchain (BC)-based FL schemes for UAVs allow trusted exchange of FL updates among UAV swarms and GS. To date, limited research has been carried out on the integration of BC and FL in UAV management. The proposed survey addresses the gap and presents a solution taxonomy of BC-based FL in UAVs for B5G networks due to the open problem. This paper presents a reference architecture and compares its potential benefits over traditional BC-based UAV networks. Open issues and challenges are discussed, with possible future directions. Finally, a logistics case study of BC-based FL-oriented UAVs in 6G networks is presented. The survey aims to aid researchers in developing potential UAV solutions with the key integrating principles over a diverse set of application verticals.
AB - Recently, unmanned aerial vehicles (UAVs) have gained attention due to increased use-cases in healthcare, monitoring, surveillance, and logistics operations. UAVs mainly communicate with mobile base stations, ground stations (GS), or networked peer UAVs, known as UAV swarms. UAVs communicate with GS, or UAV swarms, over wireless channels to support mission-critical operations. Communication latency, bandwidth, and precision are of prime importance in such operations. With the rise of data-driven applications, fifth-generation (5G) networks would face bottlenecks to communicate at near-real-time, at low latency and improved coverage. Thus, researchers have shifted towards network designs that incorporate beyond 5G (B5G) networks for UAV designs. However, UAVs are resource-constrained, with limited power and battery, and thus centralized cloud-centric models are not suitable. Moreover, as exchanged data is through open channels, privacy and security issues exist. Federated learning (FL) allows data to be trained on local nodes, preserving privacy and improving network communication. However, sharing of local updates is required through a trusted consensus mechanism. Thus, blockchain (BC)-based FL schemes for UAVs allow trusted exchange of FL updates among UAV swarms and GS. To date, limited research has been carried out on the integration of BC and FL in UAV management. The proposed survey addresses the gap and presents a solution taxonomy of BC-based FL in UAVs for B5G networks due to the open problem. This paper presents a reference architecture and compares its potential benefits over traditional BC-based UAV networks. Open issues and challenges are discussed, with possible future directions. Finally, a logistics case study of BC-based FL-oriented UAVs in 6G networks is presented. The survey aims to aid researchers in developing potential UAV solutions with the key integrating principles over a diverse set of application verticals.
KW - 6G
KW - Beyond 5G networks
KW - blockchain
KW - federated learning
KW - unmanned aerial vehicles
UR - http://www.scopus.com/inward/record.url?scp=85127024716&partnerID=8YFLogxK
U2 - 10.1109/ACCESS.2022.3161132
DO - 10.1109/ACCESS.2022.3161132
M3 - Article
AN - SCOPUS:85127024716
SN - 2169-3536
VL - 10
SP - 33154
EP - 33182
JO - IEEE Access
JF - IEEE Access
ER -