Bipartite Ramsey theorems for multiple copies of K2,2

Michael A. Henning, Ortrud R. Oellermann

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

For bipartite graphs G1 , G2 , ... ,Gk , the bipartite Ramsey number b(G1 , G2 , ... , Gk) is the least positive integer b so that any colouring of the edges of Kb,b with k colours will result in a copy of Gi in the ith colour for some i. When Gi = G for all i, we write bk(G) = 6(G1 , G2 , ... , Gk), and we write b(G) = b2(G). For all integers n ≥ 2, we show that 6(nK2,2) = 4n - 1; that is, any 2-colouring of the edges of K4n-1,4n-1 contains a monochromatic nK2,2.

Original languageEnglish
Pages (from-to)13-23
Number of pages11
JournalUtilitas Mathematica
Volume54
Publication statusPublished - Nov 1998
Externally publishedYes

ASJC Scopus subject areas

  • Statistics and Probability
  • Statistics, Probability and Uncertainty
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Bipartite Ramsey theorems for multiple copies of K2,2'. Together they form a unique fingerprint.

Cite this