TY - JOUR
T1 - Bio-sorptive remediation of crude oil polluted sea water using plantain (Musa parasidiaca) leaves as bio-based sorbent
T2 - Parametric optimization by Taguchi technique, equilibrium isotherm and kinetic modelling studies
AU - Eboibi, Blessing E.
AU - Ogbue, Michael C.
AU - Udochukwu, Esther C.
AU - Umukoro, Judith E.
AU - Okan, Laura O.
AU - Agarry, Samuel E.
AU - Aworanti, Oluwafunmilayo A.
AU - Ogunkunle, Oyetola
AU - Laseinde, Opeyeolu T.
N1 - Publisher Copyright:
© 2023 The Authors
PY - 2023/11
Y1 - 2023/11
N2 - This study investigated the potential of employing plantain leaves as a natural bio-based sorbent for crude oil spill polluted seawater remediation. Type L9(34) Taguchi orthogonal array technique was used to evaluate the effect of four independent bio-sorption factors at three different levels (crude oil initial concentration (X1 7.8, 11.5 and 15.6 g/L), seawater-crude oil temperature (X2 25, 35 and 45 °C), bio-sorbent dosage (X3 1, 2 and 3 g) and bio-sorbent particle size (X4 1.18, 2.36 and 4.72 mm) on two response indices (bio-sorption efficiency (%) and bio-sorption capacity (g/g)). Taguchi optimization technique, numerical-desirability index function optimization technique and a proposed optimization method were utilized to determine the optimum bio-sorption factors needed for the optimum bio-sorption efficiency and bio-sorption capacity. The results demonstrated that the crude oil bio-sorption efficiency of the plantain leaves was significantly influenced by X1, X3 and X4 and the bio-sorption capacity was mainly influenced by X1 and X3. The optimum bio-sorption efficiency and the optimum bio-sorption capacity were 99.05 % and 12.82 g/g, respectively, obtained at optimum combination of factors and levels of X11 (7.8 g/L), X33 (3 g) and X41 (1.18 mm) for bio-sorption efficiency and X13 (15.6 g/L) X31 (1 g) for bio-sorption capacity. The Freundlich and Dubinin-Rudeshkevich isotherm models best explain the equilibrium bio-sorption data, while the pseudo-second order kinetic model best describes the bio-sorption kinetics. The bio-sorptive remediation mechanism followed dual mechanism of physical and chemical bio-sorption and the mass transfer controlled by film diffusion. The maximum bio-sorption capacity (Kf) was 14.0 gg-1.
AB - This study investigated the potential of employing plantain leaves as a natural bio-based sorbent for crude oil spill polluted seawater remediation. Type L9(34) Taguchi orthogonal array technique was used to evaluate the effect of four independent bio-sorption factors at three different levels (crude oil initial concentration (X1 7.8, 11.5 and 15.6 g/L), seawater-crude oil temperature (X2 25, 35 and 45 °C), bio-sorbent dosage (X3 1, 2 and 3 g) and bio-sorbent particle size (X4 1.18, 2.36 and 4.72 mm) on two response indices (bio-sorption efficiency (%) and bio-sorption capacity (g/g)). Taguchi optimization technique, numerical-desirability index function optimization technique and a proposed optimization method were utilized to determine the optimum bio-sorption factors needed for the optimum bio-sorption efficiency and bio-sorption capacity. The results demonstrated that the crude oil bio-sorption efficiency of the plantain leaves was significantly influenced by X1, X3 and X4 and the bio-sorption capacity was mainly influenced by X1 and X3. The optimum bio-sorption efficiency and the optimum bio-sorption capacity were 99.05 % and 12.82 g/g, respectively, obtained at optimum combination of factors and levels of X11 (7.8 g/L), X33 (3 g) and X41 (1.18 mm) for bio-sorption efficiency and X13 (15.6 g/L) X31 (1 g) for bio-sorption capacity. The Freundlich and Dubinin-Rudeshkevich isotherm models best explain the equilibrium bio-sorption data, while the pseudo-second order kinetic model best describes the bio-sorption kinetics. The bio-sorptive remediation mechanism followed dual mechanism of physical and chemical bio-sorption and the mass transfer controlled by film diffusion. The maximum bio-sorption capacity (Kf) was 14.0 gg-1.
KW - Biosorption kinetics
KW - Biosorptive remediation
KW - Crude oil
KW - Optimization
KW - Plantain leaves
KW - Taguchi design
UR - http://www.scopus.com/inward/record.url?scp=85175802633&partnerID=8YFLogxK
U2 - 10.1016/j.heliyon.2023.e21413
DO - 10.1016/j.heliyon.2023.e21413
M3 - Article
AN - SCOPUS:85175802633
SN - 2405-8440
VL - 9
JO - Heliyon
JF - Heliyon
IS - 11
M1 - e21413
ER -