Automated recognition of the cricket batting backlift technique in video footage using deep learning architectures

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)


There have been limited studies demonstrating the validation of batting techniques in cricket using machine learning. This study demonstrates how the batting backlift technique in cricket can be automatically recognised in video footage and compares the performance of popular deep learning architectures, namely, AlexNet, Inception V3, Inception Resnet V2, and Xception. A dataset is created containing the lateral and straight backlift classes and assessed according to standard machine learning metrics. The architectures had similar performance with one false positive in the lateral class and a precision score of 100%, along with a recall score of 95%, and an f1-score of 98% for each architecture, respectively. The AlexNet architecture performed the worst out of the four architectures as it incorrectly classified four images that were supposed to be in the straight class. The architecture that is best suited for the problem domain is the Xception architecture with a loss of 0.03 and 98.2.5% accuracy, thus demonstrating its capability in differentiating between lateral and straight backlifts. This study provides a way forward in the automatic recognition of player patterns and motion capture, making it less challenging for sports scientists, biomechanists and video analysts working in the field.

Original languageEnglish
Article number1895
JournalScientific Reports
Issue number1
Publication statusPublished - Dec 2022

ASJC Scopus subject areas

  • Multidisciplinary


Dive into the research topics of 'Automated recognition of the cricket batting backlift technique in video footage using deep learning architectures'. Together they form a unique fingerprint.

Cite this