Attention Mechanism in Deep Learning for Wind Power Forecasting

Soumya Bharti, Vikash Kumar Saini, Rajesh Kumar, Ankit Vijayvargiya

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Wind energy is the fast moving renewable energy sources in the world. However, wind energy deals with many challenges namely seed capital, motionless property of wind plants and most difficult to track down economical areas. To deal with these challenges, this study proposes a fusion of attention mechanism with deep-learning models for wind power forecasting. Attention mechanism is essentially a way to non-uniformly weight the contribution of input feature vectors so, as to optimize the process of learning targets. Several models have been considered to evaluate the performance. Convolutional Neural Network (CNN) helps in extracting short term attributes to obtain high-dimensional attributes, whereas issue of inaccurate prediction imputable to merging of original data can be solved by Gated Recurrent Unit (GRU). GRU helps in extracting long-term trend of high dimensional attribute. Using original data of wind power, we verify that attention mechanism with deep learning models provide better performance for wind power forecasting.

Original languageEnglish
Title of host publication10th IEEE International Conference on Power Electronics, Drives and Energy Systems, PEDES 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781665455664
DOIs
Publication statusPublished - 2022
Externally publishedYes
Event10th IEEE International Conference on Power Electronics, Drives and Energy Systems, PEDES 2022 - Jaipur, India
Duration: 14 Dec 202217 Dec 2022

Publication series

Name10th IEEE International Conference on Power Electronics, Drives and Energy Systems, PEDES 2022

Conference

Conference10th IEEE International Conference on Power Electronics, Drives and Energy Systems, PEDES 2022
Country/TerritoryIndia
CityJaipur
Period14/12/2217/12/22

Keywords

  • Attention mechanism
  • Deep learning
  • Wind power forecasting

ASJC Scopus subject areas

  • Energy Engineering and Power Technology
  • Electrical and Electronic Engineering
  • Mechanical Engineering
  • Safety, Risk, Reliability and Quality

Fingerprint

Dive into the research topics of 'Attention Mechanism in Deep Learning for Wind Power Forecasting'. Together they form a unique fingerprint.

Cite this