Abstract
Water-soluble dendritic ligands based on tris-2-(5-sulfonato salicylaldimine ethyl)amine (5) and DAB-(5-sulfonato salicylaldimine) (6) (DAB = diaminobutane) were synthesized by means of Schiff base condensation and sulfonation reactions. These dendritic ligands were fully characterized by 1H NMR, 13C NMR and FT-IR spectroscopy, elemental analysis and mass spectrometry. Dendritic ligands (5 and 6) in combination with [RhCl(COD)]2 (COD = 1,5-cyclooctadiene) were evaluated in aqueous biphasic hydroformylation of 1-octene. New water-soluble mononuclear 5-sulfonato propylsalicylaldimine Rh(i) complexes (7 and 8) were synthesized and characterized using 1H NMR, 13C NMR and FT-IR spectroscopy, elemental analysis as well as mass spectrometry. These complexes were applied as catalyst precursors in aqueous biphasic hydroformylation reactions. All the catalyst precursors were active in the hydroformylation of 1-octene under the investigated conditions. Optimal conditions were realized at 75 °C (40 bars), where the best selectivity for aldehydes was noticed. Catalyst recycling was achieved up to 5 times with minimal loss in conversion and consistent chemoselectivities and regioselectivities. Less Rh leaching was observed in the dendritic systems (5 and 6)/[RhCl(COD)]2 as compared to mononuclear catalyst precursors (7 and 8) as determined by inductively coupled plasma-mass spectrometry (ICP-MS).
Original language | English |
---|---|
Pages (from-to) | 13927-13935 |
Number of pages | 9 |
Journal | Dalton Transactions |
Volume | 41 |
Issue number | 45 |
DOIs | |
Publication status | Published - 7 Dec 2012 |
Externally published | Yes |
ASJC Scopus subject areas
- Inorganic Chemistry