Approximating best proximity points for Reich type non-self nonexpansive mappings

Rajendra Pant, Rahul Shukla, Vladimir Rakočević

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

In this paper, we consider a general class of non-self non expansive mappings and present best proximity point results in Hilbert spaces. More precisely, we employ a Krasnosel’skiĭ–Mann type algorithm to approximate best proximity points of non-self mappings. We also propose some hybrid algorithms and obtain certain strong convergence results.

Original languageEnglish
Article number197
JournalRevista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas
Volume114
Issue number4
DOIs
Publication statusPublished - 1 Oct 2020
Externally publishedYes

Keywords

  • Best proximity point
  • Hilbert space
  • Non-self mapping

ASJC Scopus subject areas

  • Analysis
  • Algebra and Number Theory
  • Geometry and Topology
  • Computational Mathematics
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Approximating best proximity points for Reich type non-self nonexpansive mappings'. Together they form a unique fingerprint.

Cite this