Application of intelligence-based computational techniques for classification and early differential diagnosis of COVID-19 disease

Boluwaji A. Akinnuwesi, Stephen G. Fashoto, Elliot Mbunge, Adedoyin Odumabo, Andile S. Metfula, Petros Mashwama, Faith Michael Uzoka, Olumide Owolabi, Moses Okpeku, Oluwaseun O. Amusa

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)

Abstract

Clinical methods are used for diagnosing COVID-19 infected patients, but reports posit that, several people who were initially tested positive of COVID-19, and who had some underlying diseases, turned out having negative results after further tests. Therefore, the performance of clinical methods is not always guaranteed. Moreover, chest X-ray image data of COVID-19 infected patients are mostly used in the computational models for COVID-19 diagnosis, while the use of common symptoms such as “fever, cough, fatigue, muscle aches, headache etc.” in computational models is not yet reported. In this study, we employ seven classification algorithms to empirically test and verify their efficacy when applied to diagnose COVID-19 using the aforementioned symptoms. We experimented with Logistic Regression (LR), Support Vector Machine (SVM), Naïve Byes (NB), Decision Tree (DT), Multilayer Perceptron (MLP), Fuzzy Cognitive Map (FCM) and Deep Neural Network (DNN) algorithms. The techniques were subjected to random undersampling and oversampling. Our results showed that with class imbalance, MLP and DNN outperform others. However, without class imbalance, MLP, FCM and DNN outperform others with the use of random undersampling, but DNN has the best performance by utilizing random oversampling. This study identified MLP, FCM and DNN as better classifiers over LR, NB, DT and SVM, that healthcare software system developers can adopt them to develop intelligence-based expert systems which both medical personnel and patients can use for differential diagnosis of COVID-19 based on the aforementioned symptoms. However, the test of performance must not be limited to the traditional performance metrics.

Original languageEnglish
Pages (from-to)10-18
Number of pages9
JournalData Science and Management
Volume4
DOIs
Publication statusPublished - Dec 2021
Externally publishedYes

Keywords

  • Coronavirus
  • COVID-19
  • Deep Learning
  • Early differential diagnosis
  • Intelligent classifier
  • Machine Learning

ASJC Scopus subject areas

  • Management Information Systems
  • Information Systems
  • Computer Science Applications
  • Management Science and Operations Research
  • Information Systems and Management
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Application of intelligence-based computational techniques for classification and early differential diagnosis of COVID-19 disease'. Together they form a unique fingerprint.

Cite this