Antithetic magnetic and shadow Hamiltonian Monte Carlo

Wilson Tsakane Mongwe, Rendani Mbuvha, Tshilidzi Marwala

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

Hamiltonian Monte Carlo is a Markov Chain Monte Carlo method that has been widely applied to numerous posterior inference problems within the machine learning literature. Markov Chain Monte Carlo estimators have higher variance than classical Monte Carlo estimators due to autocorrelations present between the generated samples. In this work we present three new methods for tackling the high variance problem in Hamiltonian Monte Carlo based estimators: 1) We combine antithetic and importance sampling techniques where the importance sampler is based on sampling from a modified or shadow Hamiltonian using Separable Shadow Hamiltonian Hybrid Monte Carlo, 2) We present the antithetic Magnetic Hamiltonian Monte Carlo algorithm that is based on performing antithetic sampling on the Magnetic Hamiltonian Monte Carlo algorithm and 3) We propose the antithetic Magnetic Momentum Hamiltonian Monte Carlo algorithm based on performing antithetic sampling on the Magnetic Momentum Hamiltonian Monte Carlo method. We find that the antithetic Separable Shadow Hamiltonian Hybrid Monte Carlo and antithetic Magnetic Momentum Hamiltonian Monte Carlo algorithms produce effective sample sizes that are higher than antithetic Hamiltonian Monte Carlo on all the benchmark datasets. We further find that antithetic Separable Shadow Hamiltonian Hybrid Monte Carlo and antithetic Magnetic Hamiltonian Monte Carlo produce higher effective sample sizes normalised by execution time in higher dimensions than antithetic Hamiltonian Monte Carlo. In addition, the antithetic versions of all the algorithms have higher effective sample sizes than their non-antithetic counterparts, indicating the usefulness of adding antithetic sampling to Markov Chain Monte Carlo algorithms. The methods are assessed on benchmark datasets using Bayesian logistic regression and Bayesian neural network models.

Original languageEnglish
Article number9388665
Pages (from-to)49857-49867
Number of pages11
JournalIEEE Access
Volume9
DOIs
Publication statusPublished - 2021

Keywords

  • Antithetic sampling
  • Bayesian logistic regression
  • Bayesian neural network
  • Hamiltonian Monte Carlo
  • Machine learning
  • Magnetic Hamiltonian Monte Carlo
  • Shadow Hamiltonian
  • Variance reduction

ASJC Scopus subject areas

  • General Computer Science
  • General Materials Science
  • General Engineering

Fingerprint

Dive into the research topics of 'Antithetic magnetic and shadow Hamiltonian Monte Carlo'. Together they form a unique fingerprint.

Cite this