Ancient geochemical cycling in the earth as inferred from Fe isotope studies of banded iron formations from the Transvaal Craton

Clark M. Johnson, Brian L. Beard, Nicolas J. Beukes, Cornelis Klein, Julie M. O'Leary

Research output: Contribution to journalArticlepeer-review

261 Citations (Scopus)

Abstract

Variations in the isotopic composition of Fe in Late Archean to Early Proterozoic Banded Iron Formations (BIFs) from the Transvaal Supergroup, South Africa, span nearly the entire range yet measured on Earth, from -2.5 to + 1.0‰ in 56Fe/54Fe ratios relative to the bulk Earth. With a current state-of-the-art precision of ±0.05‰ for the 56Fe/54Fe ratio, this range is 70 times analytical error, demonstrating that significant Fe isotope variations can be preserved in ancient rocks. Significant variation in Fe isotope compositions of rocks and minerals appears to be restricted to chemically precipitated sediments, and the range measured for BIFs stands in marked contrast to the isotopic homogeneity of igneous rocks, which have δ56Fe= 0.00±0.05‰, as well as the majority of modern loess, aerosols, riverine loads, marine sediments, and Proterozoic shales. The Fe isotope compositions of hematite, magnetite, Fe carbonate, and pyrite measured in BIFs appears to reflect a combination of (1) mineral-specific equilibrium isotope fractionation, (2) variations in the isotope compositions of the fluids from which they were precipitated, and (3) the effects of metabolic processing of Fe by bacteria. For minerals that may have been in isotopic equilibrium during initial precipitation or early diagenesis, the relative order of δ56Fe values appears to decrease in the order magnetite > siderite > ankerite, similar to that estimated from spectroscopic data, although the measured isotopic differences are much smaller than those predicted at low temperature. In combination with on-going experimental determinations of equilibrium Fe isotope fractionation factors, the data for BIF minerals place additional constraints on the equilibrium Fe isotope fractionation factors for the system Fe(III)-Fe(II)-hematite-magnetite-Fe carbonate. 56Fe values for pyrite are the lowest yet measured for natural minerals, and stand in marked contrast to the high δ56Fe values that are predicted from spectroscopic data. Some samples contain hematite and magnetite and have positive δ56Fe values; these seem best explained through production of high 56Fe/54Fe reservoirs by photosynthetic Fe oxidation. It is not yet clear if the low δ56Fe values measured for some oxides, as well as Fe carbonates, reflect biologic processes, or inorganic precipitation from low-δ56Fe ferrous-Fe-rich fluids. However, the present results demonstrate the great potential for Fe isotopes in tracing the geochemical cycling of Fe, and highlight the need for an extensive experimental program for determining equilibrium Fe isotope fractionation factors for minerals and fluids that are pertinent to sedimentary environments.

Original languageEnglish
Pages (from-to)523-547
Number of pages25
JournalContributions to Mineralogy and Petrology
Volume144
Issue number5
DOIs
Publication statusPublished - Feb 2003

ASJC Scopus subject areas

  • Geophysics
  • Geochemistry and Petrology

Fingerprint

Dive into the research topics of 'Ancient geochemical cycling in the earth as inferred from Fe isotope studies of banded iron formations from the Transvaal Craton'. Together they form a unique fingerprint.

Cite this