An unsupervised learning approach to condition assessment on a wound-rotor induction generator

Elsie Swana, Wesley Doorsamy

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)

Abstract

Accurate online diagnosis of incipient faults and condition assessment on generators is especially challenging to automate through supervised learning techniques, because of data imbalance. Fault-condition training and test data are either not available or are experimentally emulated, and therefore do not precisely account for all the eventualities and nuances of practical operating conditions. Thus, it would be more convenient to harness the ability of unsupervised learning in these applications. An investigation into the use of unsupervised learning as a means of recognizing incipient fault patterns and assessing the condition of a wound-rotor induction generator is presented. High-dimension clustering is performed using stator and rotor current and voltage signatures measured under healthy and varying fault conditions on an experimental wound-rotor induction generator. An analysis and validation of the clustering results are carried out to determine the performance and suitability of the technique. Results indicate that the presented technique can accurately distinguish the different incipient faults investigated in an unsupervised manner. This research will contribute to the ongoing development of unsupervised learning frameworks in data-driven diagnostic systems for WRIGs and similar electrical machines.

Original languageEnglish
Article number602
JournalEnergies
Volume14
Issue number3
DOIs
Publication statusPublished - 1 Feb 2021

Keywords

  • Condition assessment
  • Incipient fault
  • Predictive maintenance
  • Unsupervised learning
  • Wound-rotor induction generator

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Building and Construction
  • Fuel Technology
  • Engineering (miscellaneous)
  • Energy Engineering and Power Technology
  • Energy (miscellaneous)
  • Control and Optimization
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'An unsupervised learning approach to condition assessment on a wound-rotor induction generator'. Together they form a unique fingerprint.

Cite this