An Interpretable Machine Learning Approach for Hepatitis B Diagnosis

George Obaido, Blessing Ogbuokiri, Theo G. Swart, Nimibofa Ayawei, Sydney Mambwe Kasongo, Kehinde Aruleba, Ibomoiye Domor Mienye, Idowu Aruleba, Williams Chukwu, Fadekemi Osaye, Oluwaseun F. Egbelowo, Simelane Simphiwe, Ebenezer Esenogho

Research output: Contribution to journalArticlepeer-review

35 Citations (Scopus)

Abstract

Hepatitis B is a potentially deadly liver infection caused by the hepatitis B virus. It is a serious public health problem globally. Substantial efforts have been made to apply machine learning in detecting the virus. However, the application of model interpretability is limited in the existing literature. Model interpretability makes it easier for humans to understand and trust the machine-learning model. Therefore, in this study, we used SHapley Additive exPlanations (SHAP), a game-based theoretical approach to explain and visualize the predictions of machine learning models applied for hepatitis B diagnosis. The algorithms used in building the models include decision tree, logistic regression, support vector machines, random forest, adaptive boosting (AdaBoost), and extreme gradient boosting (XGBoost), and they achieved balanced accuracies of 75%, 82%, 75%, 86%, 92%, and 90%, respectively. Meanwhile, the SHAP values showed that bilirubin is the most significant feature contributing to a higher mortality rate. Consequently, older patients are more likely to die with elevated bilirubin levels. The outcome of this study can aid health practitioners and health policymakers in explaining the result of machine learning models for health-related problems.

Original languageEnglish
Article number11127
JournalApplied Sciences (Switzerland)
Volume12
Issue number21
DOIs
Publication statusPublished - Nov 2022

Keywords

  • disease prediction
  • hepatitis B
  • interpretability
  • machine learning

ASJC Scopus subject areas

  • General Materials Science
  • Instrumentation
  • General Engineering
  • Process Chemistry and Technology
  • Computer Science Applications
  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'An Interpretable Machine Learning Approach for Hepatitis B Diagnosis'. Together they form a unique fingerprint.

Cite this