Abstract
Photocatalysis contributes significantly to global economic development and has promising environment application like degradation of organic contamination and energy production. The initiatives are concentrated on accelerating the reaction rates and designing novel photocatalysts for improving the ability and enhance the selectivity toward specific products. Recently, bimetallic nanoparticles (NP)/metal-organic frameworks (BMOFs), gained broader interests in heterogeneous catalysis due to their unique photocatalytic properties. Coupling of bimetallic nanoparticles with metal-organic frameworks has found to be a highly effective strategy to improve the photocatalytic activity and broaden the reaction scope. In addition, BMOFs have been found to have exceptional capabilities in breaking down organic pollutants, reducing heavy metals and producing energy. These remarkable abilities are believed to be a result of the combined effects of the bimetallic centers. This review summarizes and analyses the recent advancements in BMOFs based materials especially heterojunctions for degradation of organic pollutants and also in energy production. Different synthesis techniques of designing BMOFs composites are highlighted in this study. The underlying mechanism synergistically enhanced performance in heterogeneous catalysis is thoroughly examined. This review also explores the challenges and possible future pathways in photocatalysis using BMOFs. There are several important challenges that need to be addressed in order to improve the durability of BMOFs in real-world conditions, optimize the synthesis process for industrial applications and gain a deeper understanding of the complicated structures that influence their photocatalytic processes.
Original language | English |
---|---|
Article number | 151 |
Journal | Frontiers of Environmental Science and Engineering |
Volume | 18 |
Issue number | 12 |
DOIs | |
Publication status | Published - Dec 2024 |
Externally published | Yes |
Keywords
- Bimetallic
- Energy production
- Heterojunctions
- Metal organic frameworks
- Photocatalysis
- Water treatment
ASJC Scopus subject areas
- General Environmental Science