Abstract
Adsorption has become an attractive method for the extraction and recovery of metals from wastewater effluents. This study involved the fabrication of mesoporous neat polyacrylonitrile (PAN) monoliths and composite polymer monoliths of PAN and poly-4-vinylpyridine (P4VP) as adsorbents for toxic elements (As(V), Cr(VI)) and the recovery of PGMs(Ru(III), Rh(III), Pd(II)) from simulated wastewater solutions. Fabrication of the mesoporous polymer monoliths was conducted using the non-solvent induced phase separation method (NIPS). The monoliths were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and Brunauer–Emmett– Teller (BET). Adsorption studies were conducted using crushed monoliths saturated in 1 mg·L−1 simulated wastewater solutions. Spectroscopic analyses of the resulting filtrates were conducted using inductively coupled plasma-optical emission spectrometry (ICP-OES). In this study, the NIPS method was successfully optimized and mesoporous PAN, as well as composite polymer monoliths, were successfully fabricated. A concentration of 1 mg·L−1 of Ru(III) and Pd(II) was completely adsorbed by both monoliths. The mesoporous composite polymer monoliths exhibited the highest adsorption capacity for Rh(III), As(V), and Cr(VI). The mesoporous polymer monoliths showed great potential for use as wastewater cleaning aids as well as remediators of precious metals.
Original language | English |
---|---|
Article number | 884 |
Journal | Minerals |
Volume | 11 |
Issue number | 8 |
DOIs | |
Publication status | Published - Aug 2021 |
Keywords
- Adsorptive recovery
- Heavy metals
- Platinum group metals
- Polymer monoliths
- Simulated wastewater
ASJC Scopus subject areas
- Geotechnical Engineering and Engineering Geology
- Geology