TY - JOUR
T1 - Adsorption, excitation analysis, and sensor properties of heteroatoms (S, P, Si) encapsulated gallium nitride nanotube for hexanol application
T2 - A computational approach
AU - Oyo-Ita, Inyang
AU - Nsofor, Victory C.
AU - Alshdoukhi, Ibtehaj F.
AU - Abdullah, Hewa Y.
AU - Sfina, N.
AU - Asuquo, Bassey B.
AU - Gber, Terkumbur E.
AU - Adeyinka, Adedapo S.
AU - Orosun, Muyiwa M.
AU - Louis, Hitler
N1 - Publisher Copyright:
© 2023 Elsevier Ltd
PY - 2024/3
Y1 - 2024/3
N2 - This study focuses on tunning the electronic behavior of heteroatoms (S, Si, P) doped gallium nitride nanotube (GaNNT) as a sensor material for detection and adsorption of hexanol (HXN) using density functional theory (DFT) at the B3LYP-gd3bj/def2svp level of theory. The calculated adsorption energies (−0.757, −0.956, and −0.603 eV for HXN_S@GaNNT, HXN_P@GaNNT, and HXN_Si@GaNNT, respectively) demonstrate a strong binding between the adsorbate and the surface, with phosphorus-doped GaNNT exhibiting the strongest adsorption. Non-covalent interactions, particularly π-π stacking, were observed in the HXN_S@GaNNT and HXN_P@GaNNT complexes, while the interaction of HXN with Si@GaNNT demonstrated strong interactions. Furthermore, the investigation of Hole-electron, Optical gap, and Exciton energy revealed a decreasing trend in exciton energy (HXN_Si@GaNNT > HXN_P@GaNNT > HXN_S@GaNNT) associated with weaker electron-hole interactions. HXN_P@GaNNT exhibited heightened electron-accepting potency, suggesting better sensor performance. The fraction of electron transfer (FET) values (0.355, 0.657, and 0.493 eV for HXN_S@GaNNT, HXN_P@GaNNT, and HXN_Si@GaNNT, respectively) indicated that HXN_P@GaNNT had superior sensor potential due to a higher FET value. This material holds promise for highly sensitive sensor applications, particularly in detecting trace amounts of specific gases or monitoring subtle environmental changes.
AB - This study focuses on tunning the electronic behavior of heteroatoms (S, Si, P) doped gallium nitride nanotube (GaNNT) as a sensor material for detection and adsorption of hexanol (HXN) using density functional theory (DFT) at the B3LYP-gd3bj/def2svp level of theory. The calculated adsorption energies (−0.757, −0.956, and −0.603 eV for HXN_S@GaNNT, HXN_P@GaNNT, and HXN_Si@GaNNT, respectively) demonstrate a strong binding between the adsorbate and the surface, with phosphorus-doped GaNNT exhibiting the strongest adsorption. Non-covalent interactions, particularly π-π stacking, were observed in the HXN_S@GaNNT and HXN_P@GaNNT complexes, while the interaction of HXN with Si@GaNNT demonstrated strong interactions. Furthermore, the investigation of Hole-electron, Optical gap, and Exciton energy revealed a decreasing trend in exciton energy (HXN_Si@GaNNT > HXN_P@GaNNT > HXN_S@GaNNT) associated with weaker electron-hole interactions. HXN_P@GaNNT exhibited heightened electron-accepting potency, suggesting better sensor performance. The fraction of electron transfer (FET) values (0.355, 0.657, and 0.493 eV for HXN_S@GaNNT, HXN_P@GaNNT, and HXN_Si@GaNNT, respectively) indicated that HXN_P@GaNNT had superior sensor potential due to a higher FET value. This material holds promise for highly sensitive sensor applications, particularly in detecting trace amounts of specific gases or monitoring subtle environmental changes.
KW - adsorption
KW - DFT
KW - doping
KW - Hexanol
KW - nanotube
KW - sensor
UR - http://www.scopus.com/inward/record.url?scp=85180542854&partnerID=8YFLogxK
U2 - 10.1016/j.mtcomm.2023.107679
DO - 10.1016/j.mtcomm.2023.107679
M3 - Article
AN - SCOPUS:85180542854
SN - 2352-4928
VL - 38
JO - Materials Today Communications
JF - Materials Today Communications
M1 - 107679
ER -