Adoption of Federated Learning for Healthcare Informatics: Emerging Applications and Future Directions

Vishwa Amitkumar Patel, Pronaya Bhattacharya, Sudeep Tanwar, Rajesh Gupta, Gulshan Sharma, Pitshou N. Bokoro, Ravi Sharma

Research output: Contribution to journalArticlepeer-review

28 Citations (Scopus)


The smart healthcare system has improved the patients quality of life (QoL), where the records are being analyzed remotely by distributed stakeholders. It requires a voluminous exchange of data for disease prediction via the open communication channel, i.e., the Internet to train artificial intelligence (AI) models efficiently and effectively. The open nature of communication channels puts data privacy at high risk and affects the model training of collected data at centralized servers. To overcome this, an emerging concept, i.e., federated learning (FL) is a viable solution. It performs training at client nodes and aggregates their results to train the global model. The concept of local training preserves the privacy, confidentiality, and integrity of the patient’s data which contributes effectively to the training process. The applicability of FL in the healthcare domain has various advantages, but it has not been explored to its extent. The existing surveys majorly focused on the role of FL in diverse applications, but there exists no detailed or comprehensive survey on FL in healthcare informatics (HI). We present a relative comparison of recent surveys with the proposed survey. To strengthen healthcare data privacy and increase the QoL of patients, we proposed an FL-based layered healthcare informatics architecture along with the case study on FL-based electronic health records (FL-EHR). We discuss the emerging FL models, and present the statistical and security challenges in FL adoption in medical setups. Thus, the review presents useful insights for both academia and healthcare practitioners to investigate FL application in HI ecosystems.

Original languageEnglish
Pages (from-to)1
Number of pages1
JournalIEEE Access
Publication statusAccepted/In press - 2022


  • Biological system modeling
  • Blockchain
  • Computational modeling
  • Data models
  • Data privacy
  • Federated Learning
  • Gradient
  • Healthcare Informatics
  • Medical services
  • Model Aggregation
  • Servers
  • Training

ASJC Scopus subject areas

  • General Computer Science
  • General Materials Science
  • General Engineering


Dive into the research topics of 'Adoption of Federated Learning for Healthcare Informatics: Emerging Applications and Future Directions'. Together they form a unique fingerprint.

Cite this