Abstract
An active magnetic bearing (AMB) is an evolving research topic in the bearing industry. Compared to the conventional approach, AMB is more advantageous and has different industrial applications. The design of this bearing needs to be improvised to get more optimized performance. This leads us to focus on the better-designed structure of the actuator, which plays an essential role in AMB performance. Thus in this manuscript, we have designed and compared the I-type and U-type actuators' performances in terms of their resistance, inductance profile, and force profile to show the characteristics of these actuators. These designed actuators are simulated in Ansys Maxwell software, and compared with the simulation results. Further, these results are verified using hardware results, and the tested actuators are used to design two different AMB systems. One current controller is designed and simulated to achieve the stable levitated position of the rotor. This rotor is rotated by inserting an AC magnet in the system and finally, a rotational system is attained, and its speed is observed by the tachometer for both AMB systems. Both the proposed AMB systems are simple and compact in structure as these are having single coil and single power amplifier. These axial AMB systems are used in many high-speed applications as they are having features like less installation space, less cost and more room for heat dissipation.
Original language | English |
---|---|
Pages (from-to) | 62780-62798 |
Number of pages | 19 |
Journal | IEEE Access |
Volume | 11 |
DOIs | |
Publication status | Published - 2023 |
Keywords
- Active magnetic bearing
- I-type and U-type actuator
- controllers
- hardware implementation
- load cell
- magnetic analysis
ASJC Scopus subject areas
- General Computer Science
- General Materials Science
- General Engineering