TY - JOUR
T1 - Abyssinone V-4′ Methyl Ether, a Flavanone Isolated from Erythrina droogmansiana, Exhibits Cytotoxic Effects on Human Breast Cancer Cells by Induction of Apoptosis and Suppression of Invasion
AU - Zingue, Stéphane
AU - Gbaweng Yaya, Abel Joël
AU - Cisilotto, Julia
AU - Kenmogne, Larissa Vanelle
AU - Talla, Emmanuel
AU - Bishayee, Anupam
AU - Njamen, Dieudonne
AU - Creczynski-Pasa, Tânia Beatriz
AU - Ndinteh, Derek Tantoh
N1 - Publisher Copyright:
© 2020 Stéphane Zingue et al.
PY - 2020
Y1 - 2020
N2 - Abyssinone V-4′ methyl ether (AVME) isolated from Erythrina droogmansiana was recently reported to exhibit anti-mammary tumor effect in mice. The present work was therefore aimed at elucidating its cellular and molecular mechanisms. To achieve our goal, the cytotoxicity of AVME against tumoral and non-tumoral cell lines was evaluated by resazurin reduction test; flow cytometry allowed us to evaluate the cell cycle and mechanisms of cell death; the mitochondrial transmembrane potential, reactive oxygen species (ROS) levels, and caspase activities as well as apoptosis-regulatory proteins (Bcl-2 and Bcl-XL) were measured in MDA-MB-231 cells. Further, the antimetastatic potential of AVME was evaluated by invasion assay. AVME exhibited cytotoxic effects in all tested tumor cell lines and induced a significant increase in the percentage of MDA-MB-231 cells at G2/M and S phases of the cell cycle in a concentration-dependent manner. AVME also induced apoptosis in MDA-MB-231 cells, which was accompanied by the activation of caspase-3 and caspase-9 and downregulation of Bcl-2 and Bcl-XL proteins. Moreover, AVME suppressed cancer cell invasion by the inhibition of the metalloproteinase-9 activity. Findings from this study suggest that AVME has anti-breast cancer activities expressed through mitochondrial proapoptotic pathway including impairment of aggressive behaviors of breast cancer cells.
AB - Abyssinone V-4′ methyl ether (AVME) isolated from Erythrina droogmansiana was recently reported to exhibit anti-mammary tumor effect in mice. The present work was therefore aimed at elucidating its cellular and molecular mechanisms. To achieve our goal, the cytotoxicity of AVME against tumoral and non-tumoral cell lines was evaluated by resazurin reduction test; flow cytometry allowed us to evaluate the cell cycle and mechanisms of cell death; the mitochondrial transmembrane potential, reactive oxygen species (ROS) levels, and caspase activities as well as apoptosis-regulatory proteins (Bcl-2 and Bcl-XL) were measured in MDA-MB-231 cells. Further, the antimetastatic potential of AVME was evaluated by invasion assay. AVME exhibited cytotoxic effects in all tested tumor cell lines and induced a significant increase in the percentage of MDA-MB-231 cells at G2/M and S phases of the cell cycle in a concentration-dependent manner. AVME also induced apoptosis in MDA-MB-231 cells, which was accompanied by the activation of caspase-3 and caspase-9 and downregulation of Bcl-2 and Bcl-XL proteins. Moreover, AVME suppressed cancer cell invasion by the inhibition of the metalloproteinase-9 activity. Findings from this study suggest that AVME has anti-breast cancer activities expressed through mitochondrial proapoptotic pathway including impairment of aggressive behaviors of breast cancer cells.
UR - http://www.scopus.com/inward/record.url?scp=85089308789&partnerID=8YFLogxK
U2 - 10.1155/2020/6454853
DO - 10.1155/2020/6454853
M3 - Article
AN - SCOPUS:85089308789
SN - 1741-427X
VL - 2020
JO - Evidence-based Complementary and Alternative Medicine
JF - Evidence-based Complementary and Alternative Medicine
M1 - 6454853
ER -