TY - CHAP
T1 - Abrasive Water Jet Machining of Metallic Materials
AU - Jagadish,
AU - Gupta, Kapil
N1 - Publisher Copyright:
© 2020, The Author(s), under exclusive license to Springer Nature Switzerland AG.
PY - 2020
Y1 - 2020
N2 - Abrasive water jet machining (AWJM) is a widely accepted sustainable machining method used to machine difficult-to-cut materials in view of both environmental and economic benefits. This chapter discusses the machining performance of sustainable/green machining method on AISI 304 grade steel material. Five process parameters, namely abrasive grain size (A), abrasive flow rate (B), nozzle speed (C), working pressure (D), and standoff distance (E), are used to know the green machining attributes like MRR, process time, surface roughness, and process energy. Experimentation is done using Taguchi (L27) orthogonal array to study the influence of each process parameters on the green machining parameters. Additionally, regression analysis and ANOVA are done to show the statistical significance of the green machining process. At last, the DEAR method is used for the optimization of green machining attributes of AWJM process. The results show that AWJM process is an adequate process for machining of metallic materials and produces high-quality parts with excellent productivity and less environmental pollution. The overall optimal setting obtained is A (60 mesh, level 1), B (1.5 mm, level 1), C (150 MPa, level 1), D (225 mm/min, level 3), and E (5 g/s, level 2). The corresponding green attributes obtained are SR as 1.84 μm, MRR as 468 mm3/min, PT as 0.128 s, and PE as 769 W. Finally, confirmatory results for MRR, SR, PT, PE are found closer to the experimental results and well within the considerable ranges and satisfactory.
AB - Abrasive water jet machining (AWJM) is a widely accepted sustainable machining method used to machine difficult-to-cut materials in view of both environmental and economic benefits. This chapter discusses the machining performance of sustainable/green machining method on AISI 304 grade steel material. Five process parameters, namely abrasive grain size (A), abrasive flow rate (B), nozzle speed (C), working pressure (D), and standoff distance (E), are used to know the green machining attributes like MRR, process time, surface roughness, and process energy. Experimentation is done using Taguchi (L27) orthogonal array to study the influence of each process parameters on the green machining parameters. Additionally, regression analysis and ANOVA are done to show the statistical significance of the green machining process. At last, the DEAR method is used for the optimization of green machining attributes of AWJM process. The results show that AWJM process is an adequate process for machining of metallic materials and produces high-quality parts with excellent productivity and less environmental pollution. The overall optimal setting obtained is A (60 mesh, level 1), B (1.5 mm, level 1), C (150 MPa, level 1), D (225 mm/min, level 3), and E (5 g/s, level 2). The corresponding green attributes obtained are SR as 1.84 μm, MRR as 468 mm3/min, PT as 0.128 s, and PE as 769 W. Finally, confirmatory results for MRR, SR, PT, PE are found closer to the experimental results and well within the considerable ranges and satisfactory.
KW - Abrasive
KW - Machining
KW - Metallic material
KW - Optimization
KW - Taguchi method
KW - Water jet
UR - http://www.scopus.com/inward/record.url?scp=85076741902&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-36001-6_2
DO - 10.1007/978-3-030-36001-6_2
M3 - Chapter
AN - SCOPUS:85076741902
T3 - SpringerBriefs in Applied Sciences and Technology
SP - 13
EP - 31
BT - SpringerBriefs in Applied Sciences and Technology
PB - Springer
ER -