A review: Plastic deformation through equal channel angular pressing

Mutiu F. Erinosho, Esther T. Akinlabi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

In most manufacturing processes, objects of the required shape and size are produced through plastic deformation; sometimes by deforming the product itself through rolling, extrusion, drawing etc, and by deforming the metal removed through grinding, milling and cutting operation. In these processes, a load of appreciable magnitude is applied on the material subjected to deformation, and the plastic flow thus produced is suitably restricted to get the desired shape and size. Equal Channel Angular Pressing (ECAP) is very capable of producing ultrafine grained microstructures and improves the mechanical properties of the deformed materials. The variations in strain path directions during deformation have significantly effect on the physical and mechanical response of distorted metals.

Original languageEnglish
Title of host publicationWCE 2016 - World Congress on Engineering 2016
EditorsS. I. Ao, S. I. Ao, Len Gelman, S. I. Ao, Len Gelman, David W.L. Hukins, Andrew Hunter, Alexander M. Korsunsky
PublisherNewswood Limited
Pages719-723
Number of pages5
ISBN (Electronic)9789881404800
Publication statusPublished - 2016
EventWorld Congress on Engineering 2016, WCE 2016 - London, United Kingdom
Duration: 29 Jun 20161 Jul 2016

Publication series

NameLecture Notes in Engineering and Computer Science
Volume2224
ISSN (Print)2078-0958

Conference

ConferenceWorld Congress on Engineering 2016, WCE 2016
Country/TerritoryUnited Kingdom
CityLondon
Period29/06/161/07/16

Keywords

  • ECAP
  • Microstructural evolution
  • Severe plastic deformation
  • Strain path

ASJC Scopus subject areas

  • Computer Science (miscellaneous)

Fingerprint

Dive into the research topics of 'A review: Plastic deformation through equal channel angular pressing'. Together they form a unique fingerprint.

Cite this