TY - JOUR
T1 - A positive syn-fold test from the Neoarchaean Klipriviersberg Group of South Africa
T2 - Quo vadis Vaalbara?
AU - de Kock, M. O.
AU - Malatji, I.
AU - Wabo, H.
AU - Maré, L. P.
N1 - Publisher Copyright:
© 2022 Geological Society of South Africa. All rights reserved.
PY - 2022/12/1
Y1 - 2022/12/1
N2 - The existence of Vaalbara, the combined Neoarchaean to Palaeoproterozoic Kaapvaal-Pilbara supercraton, is questionable during the early Neoarchaean when scrutinised through the lens of recent Australian and South African palaeomagnetic data. Remarkably similar ~2.7 to 2.5 Ga geological successions (with near bed-for-bed correlatability) support a coherent Vaalbara at the end of the Neoarchaean. Here we report palaeomagnetic and rock magnetic results from the Klipriviersberg Group of South Africa, which is the oldest rock sequences used to define Vaalbara originally. A positive syn-fold test illustrated a high-temperature remanence component acquired during the formation of the Witwatersrand syncline. This fold structure predates the Vredefort Impact Structure and its formation is synchronous with the deposition of the Mesoarchaean Central Rand Group and extrusion of the Klipriviersberg Group. The studied rocks of the Klipriviersberg Group are not directly dated, but most are likley younger than 2 780 to 2 789 Ma, based on detrital zircon ages from the lowermost Ventersdorp Supergroup and U-Pb baddeleyite ages for mafic sills that intrude the Witwatersrand Supergroup that are regarded as feeders of the Kliprivierberg Group lavas, but older than the overlying 2 720 to 2 750 Ma Platberg Group. The Klipriviersberg Group pole is at 27.7°S, 32.7°E with an A95 of 11°. A comparison of Meso-to Neoarchaean palaeopoles from the Kaapvaal and Pilbara cratons suggests their shared drift path traversing the polar circle and thus supports the existence of Vaalbara across the 2.78 to 2.70 Ga interval.
AB - The existence of Vaalbara, the combined Neoarchaean to Palaeoproterozoic Kaapvaal-Pilbara supercraton, is questionable during the early Neoarchaean when scrutinised through the lens of recent Australian and South African palaeomagnetic data. Remarkably similar ~2.7 to 2.5 Ga geological successions (with near bed-for-bed correlatability) support a coherent Vaalbara at the end of the Neoarchaean. Here we report palaeomagnetic and rock magnetic results from the Klipriviersberg Group of South Africa, which is the oldest rock sequences used to define Vaalbara originally. A positive syn-fold test illustrated a high-temperature remanence component acquired during the formation of the Witwatersrand syncline. This fold structure predates the Vredefort Impact Structure and its formation is synchronous with the deposition of the Mesoarchaean Central Rand Group and extrusion of the Klipriviersberg Group. The studied rocks of the Klipriviersberg Group are not directly dated, but most are likley younger than 2 780 to 2 789 Ma, based on detrital zircon ages from the lowermost Ventersdorp Supergroup and U-Pb baddeleyite ages for mafic sills that intrude the Witwatersrand Supergroup that are regarded as feeders of the Kliprivierberg Group lavas, but older than the overlying 2 720 to 2 750 Ma Platberg Group. The Klipriviersberg Group pole is at 27.7°S, 32.7°E with an A95 of 11°. A comparison of Meso-to Neoarchaean palaeopoles from the Kaapvaal and Pilbara cratons suggests their shared drift path traversing the polar circle and thus supports the existence of Vaalbara across the 2.78 to 2.70 Ga interval.
UR - http://www.scopus.com/inward/record.url?scp=85143409493&partnerID=8YFLogxK
U2 - 10.25131/sajg.125.0017
DO - 10.25131/sajg.125.0017
M3 - Article
AN - SCOPUS:85143409493
SN - 1012-0750
VL - 125
SP - 245
EP - 264
JO - South African Journal of Geology
JF - South African Journal of Geology
IS - 3-4
ER -