Abstract
We combine existing summation-by-parts discretization methods to obtain a simplified numerical framework for partial differential equations posed on complex multi-block/element domains. The interfaces (conforming or non-conforming) between blocks are treated with inner-product-preserving interpolation operators, and the result is a high-order multi-block operator on summation-by-parts form that encapsulates both the metric terms as well as the interface treatments. This enables for a compact description of the numerical scheme that mimics the essential features of its continuous counterpart. Furthermore, the stability analysis on a multi-block domain is simplified for both for linear and nonlinear equations, since no problem-specific interface conditions need to be derived and implemented. We exemplify the combined operator technique by considering a nonlinearly stable discrete formulation of the incompressible Navier-Stokes equations and perform calculations on an underlying multi-block domain.
Original language | English |
---|---|
Article number | 111269 |
Journal | Journal of Computational Physics |
Volume | 463 |
DOIs | |
Publication status | Published - 15 Aug 2022 |
Keywords
- Multi-block operators
- Nonlinear stability
- Partial derivative approximations
- Summation-by-parts
ASJC Scopus subject areas
- Numerical Analysis
- Modeling and Simulation
- Physics and Astronomy (miscellaneous)
- General Physics and Astronomy
- Computer Science Applications
- Computational Mathematics
- Applied Mathematics