A Framework for Monitoring Stability of Tailings Dams in Real-time Using Digital Twin Simulation and Machine Learning

Joseph Mwanza, Peter Mashumba, Arnesh Telukdarie

Research output: Contribution to journalConference articlepeer-review

Abstract

Tailings dam failures cause catastrophic impact on the environment and surrounding communities. Incidences of failure in the recent past have caused industrialists and researchers to seek innovative ways for proactively managing their safety and disaster mitigation. Given Industry 4.0 technologies now available, researchers are looking to develop digital tools for cost-effective, real-time monitoring of tailings dams. However, published literature indicates that a reliable framework is still lacking. This paper proposes a framework for developing a data-driven system for monitoring tailings dam stability and early warning detection. The framework relies upon digital twin simulation and machine-learning (ML) techniques, and comprises four main components: real-time data collection, digital twin modelling, ML-based early detection and prediction, and intelligence-driven decision-support. Sensors gather real-time geophysical data from monitored structure, and the digital twin uses this data to simulate dam behaviour. ML algorithms analyse the data and simulations to enable early detection of instability and failure prediction. Literature suggests that digital twin and ML-based approaches may have advantages over traditional monitoring techniques and other AI-based methods. The paper concludes with a discussion of the framework's limitations, opportunities for improvement, and potential for application in mining and geotechnical engineering. The paper serves as a basis for model development and future research.

Original languageEnglish
Pages (from-to)2279-2288
Number of pages10
JournalProcedia Computer Science
Volume232
DOIs
Publication statusPublished - 2024
Externally publishedYes
Event5th International Conference on Industry 4.0 and Smart Manufacturing, ISM 2023 - Lisbon, Portugal
Duration: 22 Nov 202324 Nov 2023

Keywords

  • Artificial Intelligence
  • Geotechnical Engineering
  • Stability
  • Tailings Dam

ASJC Scopus subject areas

  • General Computer Science

Fingerprint

Dive into the research topics of 'A Framework for Monitoring Stability of Tailings Dams in Real-time Using Digital Twin Simulation and Machine Learning'. Together they form a unique fingerprint.

Cite this