Abstract
The spectra of nucleon-nucleus mirror systems allow examination of charge symmetry breaking in nucleon-nucleus interactions. To date, such examination has been performed with studies using microscopic models of structure. Herein we seek characterisation with a coupled-channel model in which the nucleon-nucleus interactions are described using a collective model prescription with the Pauli principle taken into account. The neutron-nucleus Hamiltonian is chosen to give the best match to the compound system spectrum, with emphasis on finding the correct ground state energy relative to the neutron-nucleus threshold. The Coulomb interactions for the proton-nucleus partner of a mirror pair are determined using charge distributions that match the root-mean-square charge radii of the nuclei in question. With the Coulomb interaction so defined modifying the neutron-nucleus Hamiltonian, we then predict a spectrum for the relevant proton-nucleus compound. Discrepancies in that resulting spectrum with measured values we tentatively ascribe to charge-symmetry breaking effects. We consider spectra obtained in this way for the mirror pairs 13C and 13N, 15C and 15F, and 15O and 15N, all to ∼ 10 MeV excitation.
Original language | English |
---|---|
Article number | 110 |
Journal | European Physical Journal A |
Volume | 51 |
Issue number | 9 |
DOIs | |
Publication status | Published - 14 Sept 2015 |
ASJC Scopus subject areas
- Nuclear and High Energy Physics